Geology and Mineralization of the Peak Zone Au-Cu-Ag Deposit, Tetlin Project, Alaska.
This presentation may contain forward-looking statements including, but not limited to, comments regarding the timing and content of upcoming work programs, geological interpretations, receipt of property titles, in-situ valuations, mining costs, potential mineral recovery processes, mineral resources or reserves and other related matters. Forward-looking statements address future events and conditions and therefore involve inherent risks and uncertainties. The forward-looking statements contained in this presentation represent the subjective views of the management of Contango ORE, Inc. and management’s current estimates of future performance based on assumptions that are subject to significant business, economic and competitive uncertainties and contingencies, which are beyond the control of Contango ORE, Inc. and which may or may not prove to be correct. The Contango ORE, Inc. properties addressed herein are at an early stage of development. More work is required before mineralization and project economics can be confidently modeled or determined. Actual results may differ materially from those currently anticipated and presented in this presentation. No representation, warranty or prediction is made or intended as to the results of future work, the ability to obtain governmental approvals for further development or the accuracy or completeness of any of the information contained in this presentation. There is no assurance that the estimates and projections herein will be sustained in future work or that the project will otherwise prove to be economic. You should not unduly rely on these forward-looking statements in this presentation. Contango ORE, Inc. expressly disclaims any and all liability relating to or resulting from the use of information contained in this presentation.
Contango Founder, President & CEO Brad Juneau

Tetlin Chief Danny Adams and Contango Founder Ken Peak

Avalon President Curt Freeman

Avalon Project Geologists Chris Van Treeck and Chris Brown

Avalon Project Geologist Greg Maynard

Avalon Senior Geologist Dave Adams
TETLIN PROJECT TIMELINE

• 2008: Lease Signed in August, remote sensing data acquired and analyzed, initial targeting completed

• 2009: First reconnaissance program Jun - Jul – follow up geochem sampling and trenching Sept - Oct

• 2010: prospecting, stream sediment and pan concentrate sampling, soil sampling, IP surveys, June - Oct

• 2011: Soil sampling, airborne magnetic and resistivity (DigHEM) survey, 11 hole (2456 m) core drilling, May - Oct

• 2012: Soil sampling, 50 hole (10,974 m) core drilling, Inferred Resource Estimate (internal), May - Oct

• 2013: Airborne magnetic and resistivity (DigHEM, HeliTEM), soil, stream sediment & pan concentrate sampling, 69 holes (14,348 m) oriented core, first resource estimate on Peak zone, Jun - Nov
TETLIN PROJECT BACKGROUND

- On Alcan Hwy, 200 paved road miles from Fairbanks, 15 miles south of Tok
- All-season gravel road with power and communications on north half of the project
- Tok has nearest electrical grid, insufficient capacity to support a large mine; high capacity power approx. 60 miles away
- 250 paved road miles north of all-weather ice-free port of Valdez, Alaska
TETLIN LAND STATUS

- 676,200 acres of fee simple land leased from Tetlin Village
- 83,720 acres State claims owned 100% by CORE
- Approximate 75% of CORE lands are prospective for mineral exploration
- Detailed exploration conducted on only 2.5% of prospective lands
TETLIN MINERAL LEASE

- 20 year term starting July 15, 2008, on 675,000 acres
 - Lease continues as long as Operations are conducted
- Minimum Work Commitment of $350,000/year.
 - CORE has met work commitment for +20 years.
- Advance Minimum Royalty of $75,000/year
- Production Royalties (Upon $450,000 paid to CORE):
 - 3.0% - 5.0% for Au, Ag, PGEs, other precious metals
 - 2.0% for Cu, Pb, Zn and other base/strat metals
 - 12.5% for uranium or coal
 - Juneau Expl. holds 3% NSR on all metals
TETLIN PHYSIOGRAPHY

Mountains

Uplands

Burns

Wetlands
REGIONAL GEOLOGY

- PreCambrian to lower Paleozoic bedrock, poorly mapped
- Prominent NW and NE trending faults
- Small Cret-Tert? intrusives mapped
- Bedrock covered by Quaternary wind-blown silt
- Good exposure in south half, <5% natural bedrock in north half
REGIONAL GOLD PROSPECTS

Mineral occurrences from ARDF for Tanacross, Nabesna, Mt. Hayes and Gulkana Quadrangles
REGIONAL COPPER PROSPECTS

Mineral occurrences from ARDF for Tanacross, Nabesna, Mt. Hayes and Gulkana Quadrangles

Peak Resource Area

Tetlin Lease
OVERLAPPING MINERAL BELTS

CHIEF DANNY HISTORY

- **2009:** 2.15 gpt Au rock sample collected during pan con-stream sediment sampling, rock sampling and trenching followed.

- **2010:** expanded by soil auger sampling to 2.5 square miles.

- **2011:** expanded by soil auger sampling to 12 sq mi; 5 of 11 holes (+8,000 ft) hit gold-silver-copper mineralization.

- **2012:** +36,000 feet of drilling, new high grade “Peak zone” skarn discovered.

- **2013:** +47,000 feet drilling, expanded Peak zone, first and only public resource estimate.
CHIEF DANNY LOOKING NORTH

- Saddle Zone (diatreme)
- VG in Pans
- Intrusive (with A-type Qtz-Mag vnlts)
- Discovery Zone
- Zoned Multi-Element Soil Anomaly
- Peak Zone Skarn (Resource Area)

To MM Zone
To Houston
PEAK ZONE: NEW DISCOVERY

- Discovery holes were targeted as linear Au-Cu soil anomaly with small IP resistivity low

- Drilling intercepted high grade gold and copper grades over 400 x 275 m area, from surface to over 250 m down dip, open E & W

- 69 of 95 holes intercepted grade-thickness >1.5 gram-meters with maximum of 1,116 gm-m and average of 178 gm-m

- Gold hosted in skarn-altered carbonates, pyrrhotite dominant, with chalcopyrite, arsenopyrite and lesser pyrite with anomalous Ag, Bi, Co & sporadic anomalous Mo and Sn
GOLD IN SOILS

- Percentile ranking used to accentuate higher values
- Several distinct northwest trending Au ± Cu anomalies
- NW and NE faults confirmed by geophysics
- Drilling results confirm soil sampling as a targeting tool
GOLD IN SOILS

Saddle diatreme breccia

Peak: distal Au-Cu skarn

Discovery: distal Au-Cu skarn + fault-controlled Zn-Pb-Ag-Au

Data from Avalon Development Corp.
Elemental Zoning in Soils

Au/Cu core
then
Au-Cu-As-Bi-Co
then
Pb-Zn-Mn
on periphery

Saddle Zone
Breccia is Au-As rich, Cu poor

Data from Avalon Development Corp.
GOLD IN SOIL OVER CONDUCTIVITY

Data from Avalon Development Corp.

- Qtz monz porphyry, with A-type quartz-mag veins (hole TET11006)
- Soil anomaly 1.5m @ 13.5 gpt, (hole TET12055)
- Mag-EM-Soil Anomaly (holes TET13111 & 115)
- Mag-EM-Soil Anomaly (hole TET13116)
- Hypothetical proximal Cu-Au skarn (holes TET 12056 & 13128)

Basal Soil Au (ppb)

- 367 to 3,260 (22)
- 59 to 367 (84)
- 30 to 59 (99)
- 13 to 30 (300)
- 6 to 13 (507)
- 5 to 6 (141)
- -5 to 5 (950)
- all others (2)

900 Hz Resistivity ohm*m

14.627
422.839
617.348
752.992
845.127
914.229
966.695
1,007.64
1,044.75
1,076.75
1,108.74
1,135.61
1,159.92
1,190.64

Topographic Contour Interval 100 feet

0.5 mile
GOLD IN SOIL OVER MAGNETICS

Qtz monz porphyry, with A-type quartz-mag veins (hole TET11006)

Soil anomaly 1.5m @ 13.5 gpt, (hole TET12055)

Mag-EM-Soil Anomaly (holes TET13111 & 115)

Mag-EM-Soil Anomaly (hole TET13116)

Hypothetical proximal Cu-Au skarn (holes TET 12056 & 13128)

Data from Avalon Development Corp.
Peak Zone is only area on the Tetlin project where mineral resources have been outlined.

Photo by Avalon Development Corp.
<table>
<thead>
<tr>
<th>Hole #</th>
<th>Zone</th>
<th>From_m</th>
<th>To_m</th>
<th>Interval_m</th>
<th>Au_gpt</th>
<th>Au_opt</th>
<th>Ag_gpt</th>
<th>Cu_%</th>
<th>Gm x m</th>
</tr>
</thead>
<tbody>
<tr>
<td>TET1216</td>
<td>Peak</td>
<td>20.0</td>
<td>45.7</td>
<td>25.8*</td>
<td>7.832</td>
<td>0.228</td>
<td>23.5</td>
<td>0.061</td>
<td>201.7</td>
</tr>
<tr>
<td>TET1216</td>
<td>Peak</td>
<td>53.3</td>
<td>60.0</td>
<td>6.7*</td>
<td>3.499</td>
<td>0.102</td>
<td>15.8</td>
<td>0.535</td>
<td>23.5</td>
</tr>
<tr>
<td>TET1216</td>
<td>Peak</td>
<td>64.6</td>
<td>78.3</td>
<td>13.7*</td>
<td>2.766</td>
<td>0.081</td>
<td>1.4</td>
<td>0.053</td>
<td>37.9</td>
</tr>
<tr>
<td>TET1216</td>
<td>Peak</td>
<td>81.4</td>
<td>114.0</td>
<td>32.6*</td>
<td>3.735</td>
<td>0.109</td>
<td>2.6</td>
<td>0.113</td>
<td>121.8</td>
</tr>
<tr>
<td>TET1217</td>
<td>Peak</td>
<td>7.9</td>
<td>57.0</td>
<td>49.1*</td>
<td>11.218</td>
<td>0.327</td>
<td>21.6</td>
<td>0.085</td>
<td>550.5</td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>7.9</td>
<td>32.3</td>
<td>24.4*</td>
<td>19.677</td>
<td>0.574</td>
<td>16.9</td>
<td>0.082</td>
<td>479.8</td>
</tr>
<tr>
<td>TET1218</td>
<td>Peak</td>
<td>85.3</td>
<td>143.9</td>
<td>58.5</td>
<td>14.452</td>
<td>0.422</td>
<td>9.1</td>
<td>0.243</td>
<td>845.7</td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>107.1</td>
<td>111.6</td>
<td>4.4</td>
<td>50.007</td>
<td>1.459</td>
<td>25.9</td>
<td>0.518</td>
<td>221.0</td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>136.1</td>
<td>142.3</td>
<td>6.2</td>
<td>32.249</td>
<td>0.941</td>
<td>13.2</td>
<td>0.347</td>
<td>199.5</td>
</tr>
<tr>
<td>TET1219</td>
<td>Peak</td>
<td>44.2</td>
<td>80.5</td>
<td>36.3</td>
<td>2.589</td>
<td>0.076</td>
<td>3.3</td>
<td>0.086</td>
<td>93.9</td>
</tr>
<tr>
<td>TET1235</td>
<td>Peak</td>
<td>168.6</td>
<td>185.9</td>
<td>17.3</td>
<td>21.766</td>
<td>0.635</td>
<td>7.4</td>
<td>0.319</td>
<td>376.8</td>
</tr>
<tr>
<td></td>
<td>Peak</td>
<td>171.7</td>
<td>176.2</td>
<td>4.5</td>
<td>67.797</td>
<td>1.977</td>
<td>10.2</td>
<td>0.363</td>
<td>305.8</td>
</tr>
<tr>
<td>TET1236</td>
<td>Peak</td>
<td>155.4</td>
<td>204.2</td>
<td>48.8</td>
<td>14.717</td>
<td>0.429</td>
<td>10.1</td>
<td>0.244</td>
<td>717.7</td>
</tr>
<tr>
<td>TET1242</td>
<td>Peak</td>
<td>142.9</td>
<td>162.5</td>
<td>19.5</td>
<td>2.756</td>
<td>0.08</td>
<td>2.6</td>
<td>0.154</td>
<td>53.8</td>
</tr>
<tr>
<td>TET1244</td>
<td>Peak</td>
<td>96.3</td>
<td>103.9</td>
<td>7.6</td>
<td>3.273</td>
<td>0.095</td>
<td>0.8</td>
<td>0.013</td>
<td>24.9</td>
</tr>
<tr>
<td>TET1248</td>
<td>Peak</td>
<td>12.2</td>
<td>28.3</td>
<td>16.2</td>
<td>1.03</td>
<td>0.03</td>
<td>1.2</td>
<td>0.012</td>
<td>16.6</td>
</tr>
<tr>
<td>TET1257</td>
<td>Peak</td>
<td>151.2</td>
<td>167.0</td>
<td>15.8</td>
<td>2.07</td>
<td>0.06</td>
<td>16.9</td>
<td>0.521</td>
<td>32.8</td>
</tr>
</tbody>
</table>

Drilled parallel to mineralization
PEAK ZONE: 46 gpt INTERVAL

Gold-rich pyrrhotite ± chalcopyrite ± arsenopyrite

Chlorite-amphibole retrograde skarn
INITIAL 2013 DRILL PLAN

2012 Holes in Red
Proposed Holes in Maroon

Pre-season 2013
Drill Area – Infill
to Indicated status

Discovery
Hole Tet12016

500 m

100 m

100 m
2013 OPERATIONAL METRICS

- Wheel-mounted and fly drills at Chief Danny completed 47,079 feet of drilling in 69 holes (averaged 412 ft/day)
- Recon teams collected 368 recon samples over newly staked Eagle claims
- Auger teams collected 1,406 soil samples at Chief Danny, Tors, Chisana and recon
- All-in 2013 cost was approximately $10.3 million, leaving ~$4 million for future needs
PEAK ZONE LOOKING SOUTHEAST

Discovery Hole
PEAK ZONE DRILL INTERCEPTS
2013

<table>
<thead>
<tr>
<th>Hole #</th>
<th>From_m</th>
<th>To_m</th>
<th>Interval_m</th>
<th>Au_gpt</th>
<th>Au_opt</th>
<th>Ag_gpt</th>
<th>Cu_%</th>
<th>Gm x M</th>
</tr>
</thead>
<tbody>
<tr>
<td>TET13107</td>
<td>0.00</td>
<td>159.25</td>
<td>159.25*</td>
<td>7.010</td>
<td>0.204</td>
<td>6.6</td>
<td>0.102</td>
<td>1116.3</td>
</tr>
<tr>
<td>TET13110</td>
<td>2.13</td>
<td>99.06</td>
<td>96.93</td>
<td>9.060</td>
<td>0.264</td>
<td>4.3</td>
<td>0.093</td>
<td>878.2</td>
</tr>
<tr>
<td>TET13062</td>
<td>88.90</td>
<td>153.70</td>
<td>64.80</td>
<td>13.101</td>
<td>0.382</td>
<td>21.0</td>
<td>0.482</td>
<td>848.9</td>
</tr>
<tr>
<td>TET13063</td>
<td>131.11</td>
<td>171.60</td>
<td>40.49</td>
<td>16.550</td>
<td>0.483</td>
<td>36.1</td>
<td>0.732</td>
<td>670.1</td>
</tr>
<tr>
<td>TET13117</td>
<td>0.00</td>
<td>134.82</td>
<td>134.82</td>
<td>4.848</td>
<td>0.141</td>
<td>2.9</td>
<td>0.084</td>
<td>653.6</td>
</tr>
<tr>
<td>TET13100</td>
<td>10.98</td>
<td>106.90</td>
<td>95.92</td>
<td>5.748</td>
<td>0.168</td>
<td>6.9</td>
<td>0.140</td>
<td>551.3</td>
</tr>
<tr>
<td>TET13088</td>
<td>19.18</td>
<td>157.20</td>
<td>138.02</td>
<td>3.626</td>
<td>0.106</td>
<td>11.4</td>
<td>0.113</td>
<td>500.5</td>
</tr>
<tr>
<td>TET13124</td>
<td>33.22</td>
<td>168.72</td>
<td>135.50</td>
<td>3.240</td>
<td>0.095</td>
<td>3.6</td>
<td>0.115</td>
<td>439.0</td>
</tr>
<tr>
<td>TET13098</td>
<td>9.75</td>
<td>94.18</td>
<td>84.43</td>
<td>4.988</td>
<td>0.145</td>
<td>16.7</td>
<td>0.167</td>
<td>421.1</td>
</tr>
<tr>
<td>TET13064</td>
<td>147.20</td>
<td>191.40</td>
<td>44.20</td>
<td>8.464</td>
<td>0.247</td>
<td>5.5</td>
<td>0.169</td>
<td>374.1</td>
</tr>
<tr>
<td>TET13104</td>
<td>0.00</td>
<td>142.60</td>
<td>142.60</td>
<td>2.529</td>
<td>0.074</td>
<td>2.4</td>
<td>0.082</td>
<td>360.6</td>
</tr>
<tr>
<td>TET13082</td>
<td>5.79</td>
<td>93.38</td>
<td>87.59</td>
<td>4.025</td>
<td>0.117</td>
<td>19.3</td>
<td>0.300</td>
<td>352.5</td>
</tr>
<tr>
<td>TET13089</td>
<td>2.74</td>
<td>101.60</td>
<td>98.86</td>
<td>2.500</td>
<td>0.073</td>
<td>3.5</td>
<td>0.093</td>
<td>247.2</td>
</tr>
<tr>
<td>TET13079</td>
<td>120.04</td>
<td>157.89</td>
<td>37.85</td>
<td>4.366</td>
<td>0.127</td>
<td>3.7</td>
<td>0.203</td>
<td>165.3</td>
</tr>
<tr>
<td>TET13084</td>
<td>134.95</td>
<td>160.33</td>
<td>25.38</td>
<td>5.086</td>
<td>0.148</td>
<td>9.0</td>
<td>0.244</td>
<td>129.1</td>
</tr>
<tr>
<td>TET13085</td>
<td>130.13</td>
<td>175.16</td>
<td>45.03</td>
<td>2.740</td>
<td>0.080</td>
<td>69.5</td>
<td>1.401</td>
<td>123.4</td>
</tr>
<tr>
<td>TET13080</td>
<td>135.41</td>
<td>157.38</td>
<td>21.97</td>
<td>5.378</td>
<td>0.157</td>
<td>2.7</td>
<td>0.070</td>
<td>118.2</td>
</tr>
</tbody>
</table>

Drilled parallel to mineralization
Data from Avalon Development Corp.
PEAK ZONE – COPPER AREA

Data from Avalon Development Corp.
TET1362 MULTI - ELEMENT PLOT

<table>
<thead>
<tr>
<th>Au</th>
<th>Ag</th>
<th>Cu</th>
<th>Co</th>
<th>S</th>
<th>As</th>
<th>Bi</th>
<th>Sn</th>
<th>Mo</th>
<th>Sb</th>
<th>Pb</th>
<th>Zn</th>
<th>Cd</th>
<th>Fe</th>
</tr>
</thead>
</table>

64.8 m @ 13.101 gpt Au (849 gm-m)
TET1369 MULTI-ELEMENT PLOT

49.7 mt @ 0.538% Cu
GOLD IN PEAK ZONE

Free gold in hole TET13117, 131 meters. Gold is within and adjacent to banded pyrrhotite in chlorite-amphibole alteration.

Data from Avalon Development Corp.
Native Gold

Bismuth

Tellurium

Microprobe data from Peter Illig, 2013
SKARN TEXTURES

Massive pyrrhotite with retrograde chlorite + amphiboles

Very coarse-grained pyrrhotite + chalcopyrite + arsenopyrite

“Cuniform” textured pyrrhotite

Data from Avalon Development Corp.
PRIMARY TEXTURES

VCG Massive Sulfide
Saddle Zone Breccia
Cataclastic Massive Sulfide

Data from Avalon Development Corp.
OXIDATION ZONE FEATURES

Malachite on fracture

FeOx + Native Copper

Contact between sulfides and “sponge rock” boxwork

Data from Avalon Development Corp.
CAUTIONARY NOTE TO U.S. INVESTORS

The U.S. Securities and Exchange Commission permits U.S. listed mining companies, in their filings with the SEC, to disclose only those mineral deposits that a company can economically and legally extract or produce. Contango ORE, Inc. uses certain terms in this presentation, on its website and in press releases, such as inferred resources, indicated resources, which the SEC guidelines strictly prohibit U.S. registered companies from including in their filings with the SEC (which may not be consistent with reserve definitions established by the SEC). U.S. investors are urged to consider closely the disclosure in our Form 10-K which may be obtained from Contango ORE, Inc., or from the SEC website at http://us.sec.gov/edgar.shtml
PEAK ZONE RESOURCES

<table>
<thead>
<tr>
<th>Category</th>
<th>Cut-off (g/t) (AuEq)</th>
<th>Tonnes > cut-off (tonnes)</th>
<th>Au (g/t)</th>
<th>Ag (g/t)</th>
<th>Cu (%)</th>
<th>Au Eq (g/t)</th>
<th>Total Grams</th>
<th>Total Ounces</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicated</td>
<td>0.5</td>
<td>5,970,000</td>
<td>3.46</td>
<td>11.8</td>
<td>0.25</td>
<td>4.08</td>
<td>24,357,600</td>
<td>783,115</td>
</tr>
<tr>
<td>Inferred</td>
<td>0.5</td>
<td>3,850,000</td>
<td>2.07</td>
<td>14.28</td>
<td>0.23</td>
<td>2.69</td>
<td>10,356,500</td>
<td>332,969</td>
</tr>
</tbody>
</table>

- Resource from 78 of 130 holes, 16,010 meters of core.
- 7 gold values were capped at 75.0 gpt, 13 silver values were capped at 252.0 gpt and 7 copper values were capped at 5.40%
- Resource blocks are blocks 10 x 10 x 5 meters, ore S.G. is 3.15, waste S.G. is 2.81
- Grades for Au, Ag and Cu were interpolated using Ordinary Kriging
- For AuEq calc: Gold = US$1318/oz. Copper = $3.25/lb, Silver = $21.55/oz

Data from Giroux, Nov., 2013
Data from Giroux, Nov., 2013
PEAK ZONE PLAN 950 LEVEL

LEGEND
Au > 0.0 < 0.25 g/t
Au >= 0.25 < 0.50 g/t
Au >= 0.50 < 1.00 g/t
Au >= 1.00 < 2.00 g/t
Au >= 2.00 < 5.00 g/t
Au >= 5.00 g/t

5 m Composite

Data from Giroux, Nov., 2013
Initial modelling assumed mineralization had a tabular geometry.

Final drilling indicates mineralization is “blobular”.

Peak Zone, HELITEM Conductivity Models and Existing Holes Imbedded in Higher Threshold Inversion Model Conductivity Surface. View looking north-northeast. Data from Condor Geophysics.
3D MAG + CONDUCTIVITY + SULFIDES

Sulfide data from Avalon Development, Fugro raw geophysical data interpreted by Condor Geophysics, 2013
Late-time Helitem Channel 25 Conductivity

Qtz monz porphyry, with A-type quartz-mag veins (hole TET11006)

Conductive river-Bottom sediment – not mineralized

Soil anomaly 1.5m @ 13.5 gpt, (hole TET12053)

Mag-EM-Soil Anomaly (hole TET13116)

Mag-EM-Soil Anomaly (holes TET13111 &115)

Hypothetical proximal Cu-Au skarn (holes TET 12056 & 13128)

Peak Zone (only known resource area)

Peak Zone (only known resource area)

Fugro Helitem raw data interpreted by Condor Geophysics, 2013

(conductive zones in red/hot pink, resistive zones in blue)
INDEPENDENT EXPERT OPINION
Conclusions by Dick Sillitoe after site visit, Sept. 2013

- The Peak Zone mineralization resembles a retrograde calcic skarn
- Semi-massive sulfide hosts the Au, Cu, Ag mineralization
- Quartz monzonite porphyry contains barren quartz magnetite A-type veins
- Peak Zone mineralization resembles the Fortitude skarn in the Copper Canyon district of Nevada
- Additional mineralized marble bodies may exist
- Proximal oxidized skarn mineralization may exist adjacent to the quartz monzonite porphyry
- The arsenic-bearing polymictic breccia at the Saddle Zone is interpreted to be an ignimbrite filling a magmatic diatreme vent and its periphery is a prospective Au - Ag target
PEAK VERSUS FORTITUDE

<table>
<thead>
<tr>
<th>Geologic feature</th>
<th>Peak zone, Tetlin</th>
<th>Fortitude deposit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host rock</td>
<td>Deformed marble lens</td>
<td>Limestone horizon</td>
</tr>
<tr>
<td>Inferred related intrusive</td>
<td>Quartz monzonite</td>
<td>Granodiorite Porphyry</td>
</tr>
<tr>
<td>Main prograde mineral</td>
<td>Pyroxene</td>
<td>Pyroxene</td>
</tr>
<tr>
<td>Main retrograde minerals</td>
<td>Amphibole and chlorite</td>
<td>Amphibole and chlorite</td>
</tr>
<tr>
<td>Main sulfide mineral</td>
<td>Pyrrhotite</td>
<td>Pyrrhotite</td>
</tr>
<tr>
<td>Subsidiary sulfide minerals</td>
<td>Pyrite, chalcopyrite and arsenopyrite</td>
<td>Pyrite, chalcopyrite and arsenopyrite</td>
</tr>
<tr>
<td>Total sulfide content</td>
<td>10–15 vol. %</td>
<td>10 vol. %</td>
</tr>
<tr>
<td>Metal signature</td>
<td>Au-Cu-As-Bi-Te-Co</td>
<td>Au-Cu-As-Bi-Te</td>
</tr>
<tr>
<td>Metal Zoning</td>
<td>Cu+Au proximal, As+Pb+Zn distal</td>
<td>Cu+Au proximal, As+Pb+Zn distal</td>
</tr>
<tr>
<td>Hedleyite (Bi_7Te_3)</td>
<td>Present</td>
<td>Present</td>
</tr>
<tr>
<td>Tonnage</td>
<td>~6 Mt (indicated)</td>
<td>~10 Mt</td>
</tr>
<tr>
<td>Gold grade</td>
<td>3.46 gpt</td>
<td>7 g/t (half orebody >10 g/t)</td>
</tr>
<tr>
<td>Copper grade</td>
<td>0.25%</td>
<td>0.12%</td>
</tr>
<tr>
<td>Silver grade</td>
<td>11.8 gpt</td>
<td>25 g/t</td>
</tr>
<tr>
<td>Gold recovery</td>
<td>Gravity & Flotation?</td>
<td>Cyanidation (Cu+Ag not recovered)</td>
</tr>
</tbody>
</table>

Fortitude data from Wotruba and others, 1988 and Myers and Meinert, 1990.
PEAK ZONE ANALOG: FORTITUDE, NEVADA

- Pyrrhotite-dominant distal gold skarn
- Cu/Au ratio decreases away from core
- Pb+Zn+Ag form halo around Cu-Au and Au-Ag zones
- Au-enriched skarn outside of biotite halo
- Relationship to nearby intrusive is not obvious
EXPLORATION PROSPECTS

- Tors: multiple mag-cond highs, anomalous geochem
- MM: multiple mag-cond highs, anomalous geochem
- Chisana: multiple mag-cond highs, VG in pans
- Copper Hill: multiple streams with VG
- Eagle: multiple streams with VG or Au ± Cu anomalies
- Other: multiple VG or Au ± Cu anomalies, no follow-up
EARLY-STAGE TARGETS

<table>
<thead>
<tr>
<th>Prospect</th>
<th>Pan-Stream Sampling</th>
<th>Soil Sampling</th>
<th>Trenching</th>
<th>Airborne Geophysics</th>
<th>Ground Geophysics</th>
<th>Drilling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tors</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>MM</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Chisana</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Copper Hill</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Taixtsalda</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>TVR</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>NW Copper Hill</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>F Zone</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>W Zone</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Moose Creek</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Juneau</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>TV Zone</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Eagle</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Stream Sediments Only – Gold-Arsenic Factor Group 6

Data from Avalon Development, 2013
Stream Sediments Only – Arsenic-Copper Factor Group 7

- South Half of Project
- NW Cu Hill Prospect
- Juneau Prospect (VG)
- W Zone (VG)
- Cu Hill Zone (VG)

(Strongest correlations in hot pink, weakest in blue)

Data from Avalon Development, 2013
Eagle Zone – Gold in Pan Concentrates

Peak Zone

Eagle Zone – Copper in Stream Sediments

Peak Zone
COMMUNITY ENGAGEMENT

- 2009 – Tetlin Village Transportation System vehicle donation for matching grant, helicopter transport of Culture Camp supplies, Elder heating oil assistance, 4 full-time, 9 part-time Tetlin employees

- 2010 – Helicopter transport of Culture Camp supplies, road maintenance assistance, Tetlin Village Council emergency medical fund donation, 5 full-time Tetlin employees

- 2011 – Helicopter transport of Culture Camp supplies, road maintenance assistance, Tetlin Village Council emergency medical fund donation, 4 full-time Tetlin employees

- 2012 – Helicopter transport of Culture Camp supplies, road maintenance assistance, Tetlin Village Council emergency medical fund donation, Community Open House and cookout, Tetlin Basketball Tournament sponsorship, Tetlin School trip to NYC-Philadelphia-Washington sponsorship, 8 full-time Tetlin employees

- 2013 – Staff participation in Village Clean-up Day, Road Maintenance Assistance, Tetlin Village Council emergency medical fund donation, Softball Tournament Sponsorship, Upper Tanana Language Conference sponsor, Tetlin Dog Mushers Assoc. sponsor, Tetlin Elders Firewood supply donation, 15 full-time, 8 part-time Tetlin employees
ENVIRONMENTAL - REGULATORY

- Initial Aquatic Fauna Survey (Aug 2012) ABR
- Expanded Water Quality Sampling (June & Oct, 2013) ABR
- Aquatic Fauna Survey (June & July, 2013) ABR
- Infrastructure Reclamation (July-September, 2013)
- Weather Station Installation (July, 2013) Avalon
- Wetlands Determination (Aug, 2013) ABR
ONGOING ACTIVITIES

- Regulatory Consultant – SRK
- Acid Rock Drainage – SRK
- Metallurgical/Beneficiation – SRK
- Baseline Water Quality – ABR, Inc.
- Baseline Aquatic Sampling – ABR, Inc.
- Wetlands Determinations – ABR, Inc.
- Resource Estimation – Gary Giroux
- Geophysical Interp – Condor Geophysics
ACKNOWLEDGMENTS

My personal thanks to my staff and to Contango ORE, Inc. for making this presentation possible.